Vol. 38 (Nº 40) Año 2017. Pág. 45
Irina Sergeevna DMITRIEVA 1; Rustam Ilfarovich SHARAFUTDINOV 2; Vladislav Olegovych GERASIMOV 3; Elvir Munirovich AKHMETSHIN 4; Sergey Vasilyevich PAVLOV 5
Recibido: 04/04/2017 • Aprobado: 12/04/2017
ABSTRACT: Innovations and innovation activity become driving forces for the development of all sectors of the economy, and the development of human capital in particular. For this reason, in this work we offered a methodological approach of an estimation of human capital in the case of the Republic of Tatarstan and the Volga Federal District regions for the period from 2010 to 2015 with forecast to 2020. |
RESUMO: Las innovaciones y las actividades de innovación se convierten en motores del desarrollo de todos los sectores de la economía y del desarrollo del capital humano en particular. Por esta razón, en este trabajo ofrecemos un enfoque metodológico de una estimación del capital humano en el caso de la República de Tatarstán y el Distrito Federal del Volga para el período 2010-2015 con previsión hasta 2020. |
In recent years, more and more attempts in Russia to strengthen innovation processes undertakes, which should create the conditions for a new stage of development of the national economy (Cecina, 2013, p. 242). Often, standard and traditional methods of control factors of production, specifically human capital, begin to lose their potential and become more and more constraints that lead to a decrease in the efficiency of the use of modern innovative human capital programs (Gerasimov et. al., 2016, p. 202), (Varvarigos and Arsenis, 2015, p. 151).
In this regard, as well as the increasingly dynamic processes in the economy, there is a need to develop new approaches in the control and the development of innovative human capital (Markova and Smirnova, 2013, p. 163). This is due to the fact that there are innovations and innovation activity become driving forces for the development of all sectors of the economy, and the development of human capital in particular (Korableva and Kalimullina, 2016). However, to improve the management of the innovative human capital development modern methods of evaluation are needed (Korableva and Kalimullina, 2014). Development and testing of a valid method for assessing human capital in view of its innovation potential will identify and analyze its condition in various regions of the country (Zubakov and Mustafin, 2015, p. 272), (Latyshev and Akhmetshin, 2015).
In Russia, one of the most actively developing innovative regions the Republic of Tatarstan appears it is among the five most socio - economically developed regions of Russia during last several years (Ustyuzhna and Khusainova, 2013). Traditionally, Tatarstan has high educational, scientific, innovative and production potential. For this reason, testing methodology for assessing human capital of the regions in view of its innovation potential we chose Tatarstan. To determine the effect of human capital on the results of socio - economic achievements in the republic the analysis and the assessment of human capital has been held, including in the area of innovations in the Republic of Tatarstan and other subjects of the Volga Federal District (VFD). Calculations and analysis were carried out on the basis of data for the period 2010-2015 (Gorodnikova et al., 2015, p. 320).
The theoretical basis of the study were the results of fundamental scientific works of leading domestic and foreign scientists who have devoted their works on human capital such as: Baron A., Armstrong, M. (Baron and Armstrong, 2007), Davenport T. О., Schultz T. (Schultz, 1961), Ansoff I., Vikhansky O. S., Egorshin A. P., Karlof B., Lunev V. L., Kubenka M. (2014), Kralova V. (2013), Petrov A. P., Thompson A., Bondarenko, M. P., Shafran A. M., Mustafin A. N., Misharina, M. V. The methodological basis of the study is a systematic approach to the analysis of the considered factors. The study is based on extensive use of methods of analysis and synthesis, systematization and integration, factor and statistical analysis. The above methods are used in different combinations at different stages of the study (Nevretdinova, 2015, p. 552). In the study so-called representative approach, method of assessing the region's human capital was used as a base (Zabelina et al., 2013, p.55).
As an empirical basis the database of the Federal service of state statistics and territorial bodies of the Volga Federal District, as well as materials of science seminars and scientific conferences are used.
In assessing of the development of human capital level of the Republic of Tatarstan with its innovative potential consideration as of elements of the regional human capital indicators the following indicators are proposed (Table 1) (Zubarevich, 2014, p. 9).
Description and justification of the research methods used. Normally, the methods will be selected from known and proven examples. In special cases the development of a method may be a key part of the research, but then this will have been described in Introduction section and reviewed in first one.
Table 1- The indicators to measure the region's human capital system
Next, it is necessary to determine the indices of Education Capital Index (ECI), Index of labor capital (ILC), Health capital index (HCI), Index of sociocultural capital (ISCC), Index of innovation and intellectual capital (IIIC) for each territory. Integral (overall) index of the region's human capital (IIRHC) should be calculated based on them.
In order to simplify the methodology for assessing the human capital, the relative importance of each individual and composite indices can be considered equal area formula 3-8. (Zabelina et al., 2013, p.56).
We carry out an assessment of human capital for the Republic of Tatarstan, as for the parameters transfer it is necessary to compare all the regions of the Volga Federal District. As a result, it will be shown value figures for Tatarstan, calculated on the base of Rosstat data and transferred into the range of values from 0 to 1, with the help of the formulas – (1) и (2) (Table 2).
Table 2 -Integrated performance of the evaluation of the Republic
of Tatarstan human capital for the year 2010-2015
Indicator |
2010 |
2011 |
2012 |
|||||||||
1 |
1 |
1 |
||||||||||
0,29 |
0,29 |
0,30 |
||||||||||
0,40 |
1 |
0,70 |
0,53 |
0,33 |
0,78 |
0,43 |
1 |
0,86 |
||||
0,03 |
0 |
0,09 |
0,32 |
0,29 |
0,46 |
0,25 |
0,08 |
0,71 |
||||
0,83 |
0,76 |
0,79 |
||||||||||
0,84 |
1 |
0,81 |
||||||||||
0,40 |
0,65 |
0,64 |
||||||||||
0,6 |
0,6 |
0,7 |
||||||||||
1 |
1 |
1 |
||||||||||
0,46 |
0,62 |
0,69 |
||||||||||
1 |
1 |
0,98 |
1 |
1 |
1 |
|||||||
0,70 |
0,59 |
0,73 |
||||||||||
0,80 |
0,78 |
0,77 |
||||||||||
1 |
1 |
0,18 |
||||||||||
1 |
1 |
1 |
1 |
1 |
1 |
|||||||
Indicator |
2013 |
2014 |
2015 |
|||||||||
1 |
1 |
1 |
||||||||||
0,27 |
0,31 |
0,32 |
||||||||||
0,15 |
1 |
0,86 |
0,26 |
0,77 |
0,03 |
0,49 |
1 |
0,90 |
||||
0,04 |
0,20 |
0,46 |
0,33 |
0,10 |
0,44 |
0,19 |
0,10 |
0,13 |
||||
0,78 |
0,80 |
0,87 |
||||||||||
0,76 |
0,68 |
0,79 |
||||||||||
0,59 |
0,81 |
0,76 |
||||||||||
0,9 |
0,80 |
0,70 |
||||||||||
1 |
1 |
1 |
||||||||||
0,51 |
0,48 |
0,55 |
||||||||||
1 |
1 |
1 |
1 |
1 |
1 |
|||||||
0,79 |
0,82 |
0,72 |
||||||||||
0,71 |
0,82 |
0,91 |
||||||||||
0,16 |
0,14 |
0,13 |
||||||||||
1 |
1 |
1 |
1 |
1 |
0.89 |
|||||||
Thus, performed calculations show that the value of each index varies from 0 to 1. The closer index value to, the greater the level of development on a particular index in the given region (Gagarin, 2012, p. 11).
We suppose that the influence of each parameter on human capital has equivalent effects. Final results form the overall index of human capital development in the region. In compare with 2010, all indexes show increase in their values and continue to show steady growth (Gapsalamov, 2013).
Next, we need to calculate the following indexes: ECI, ILC, HCI, ISCC and IIIC, which are necessary to calculate the overall index of human capital development in the region:
PPI (2010) = (1+ 0.20 + 0.40 + 1) / 4 = 0.67. Accordingly: 2011 = 0.54; 2012 = 0.68; 2013 = 0.61; 2014 = 0.59; 2015 = 0.70 we will calculate value of other parameters, in an analogous manner, with use of the following the formulas - (3-8) (Table 3).
Table 3 - Human Capital Index of the Republic of Tatarstan for 2010-2015 year
The value of human capital indicators |
Indicators, by year |
|||||
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
|
Educational capital index( ECI) |
0,57 |
0,54 |
0,68 |
0,61 |
0,59 |
0,70 |
The index of labor capital (ILC) |
0,66 |
0,75 |
0,74 |
0,73 |
0,76 |
0,77 |
Health Capital Index (HCI) |
0,60 |
0,55 |
0,68 |
0,66 |
0,40 |
0,63 |
The index of sociocultural capital (ISCC) |
0,65 |
0,69 |
0,79 |
0,75 |
0,53 |
0,51 |
Index of innovation and intellectual capital (IIIC) |
0,60 |
0,66 |
0,54 |
0,49 |
0,53 |
0,52 |
The general index of the region's human capital |
0,62 |
0,63 |
0,68 |
0,64 |
0,56 |
0,62 |
Thus, most of the indicators in the period from 2010 to 2015 show a steady growth, with the exception of the indices of sociocultural and innovation and intellectual capitals, what explains by the reduction in spending on education and social policies during a period of crisis (McGuirk et al., 2015, p. 971).
For more precise information and a complete picture of the situation, we need to carry out a comparative description of the human capital state of the Volga Federal District regions.
Table 4 - Education Capital Index (ECI) VFD regions for the 2010-2015 year.
VFD Region |
ECI, on years |
|||||
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
|
Republic of Bashkortostan |
0,44 |
0.45 |
0.41 |
0.43 |
0.44 |
0.47 |
Kirov region |
0,30 |
0.29 |
0.34 |
0,28 |
0,35 |
0,36 |
Mari El Republic |
0,28 |
0,30 |
0,30 |
0,24 |
0,25 |
0,37 |
The Republic of Mordovia |
0,29 |
0,32 |
0,43 |
0,41 |
0,44 |
0,43 |
Nizhny Novgorod Region |
0,63 |
0,71 |
0,71 |
0,65 |
0,66 |
0,68 |
Orenburg region |
0,44 |
0,26 |
0,24 |
0,28 |
0,28 |
0,29 |
Penza region |
0,40 |
0,33 |
0,38 |
0,31 |
0,30 |
0.32 |
Perm Krai |
0,19 |
0,19 |
0,37 |
0,23 |
0,26 |
0,25 |
Samara Region |
0,45 |
0,43 |
0,44 |
0,40 |
0,50 |
0,50 |
Saratov region |
0.32 |
0,35 |
0,34 |
0,30 |
0,29 |
0,36 |
Republic of Tatarstan |
0,57 |
0,54 |
0,68 |
0,61 |
0,59 |
0,70 |
Udmurt republic |
0,56 |
0,49 |
0,50 |
0,49 |
0,40 |
0,54 |
Ulyanovsk region |
0,38 |
0,42 |
0,36 |
0,46 |
0,31 |
0,44 |
Chuvash Republic |
0,39 |
0,33 |
0,26 |
0,29 |
0,30 |
0,28 |
----
Table 5 - Index of labor capital (ILC) of VFD regions for the 2010-2015 year.
VFD Region |
ILC, on years |
|||||
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
|
Republic of Bashkortostan |
0,28 |
0,29 |
0,21 |
0,14 |
0,17 |
0,14 |
Kirov region |
0,37 |
0,32 |
0,15 |
0,20 |
0,26 |
0,26 |
Mari El Republic |
0,30 |
0,29 |
0,22 |
0,31 |
0,35 |
0,32 |
The Republic of Mordovia |
0,74 |
0.85 |
0,69 |
0,73 |
0,66 |
0,67 |
Nizhny Novgorod Region |
0,55 |
0,62 |
0,60 |
0,60 |
0,65 |
0,51 |
Orenburg region |
0,37 |
0,35 |
0,35 |
0,36 |
0,35 |
0,26 |
Penza region |
0,32 |
0,38 |
0,37 |
0,28 |
0.34 |
0,33 |
Perm Krai |
0,45 |
0,42 |
0,22 |
0,26 |
0,08 |
0,07 |
Samara Region |
0,69 |
0,90 |
0,77 |
0,87 |
0,88 |
0,88 |
Saratov region |
0,58 |
0,41 |
0,26 |
0,23 |
0,27 |
0,29 |
Republic of Tatarstan |
0,66 |
0,75 |
0,74 |
0,73 |
0,76 |
0,77 |
Udmurt republic |
0,42 |
0,50 |
0,45 |
0,40 |
0,42 |
0,47 |
Ulyanovsk region |
0,46 |
0,65 |
0,36 |
0,36 |
0,35 |
0,34 |
Chuvash Republic |
0,45 |
0,46 |
0,54 |
0,43 |
0,50 |
0,52 |
-----
Table 6- Health capital index (HCI) VFD regions for the 2010-2015 year.
VFD Region |
HCI, on years |
|||||
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
|
Republic of Bashkortostan |
0,48 |
0,43 |
0,42 |
0,40 |
0,44 |
0,46 |
Kirov region |
0,70 |
0,64 |
0,56 |
0,51 |
0,55 |
0,60 |
Mari El Republic |
0,43 |
0,46 |
0,44 |
0,34 |
0,35 |
0,39 |
The Republic of Mordovia |
0,67 |
0,59 |
0,60 |
0,59 |
0,65 |
0,71 |
Nizhny Novgorod Region |
0,39 |
0,45 |
0,48 |
0,37 |
0,33 |
0,47 |
Orenburg region |
0,32 |
0,23 |
0,27 |
0,17 |
0,15 |
0,23 |
Penza region |
0,34 |
0,38 |
0,36 |
0,60 |
0,54 |
0,49 |
Perm Krai |
0,06 |
0,19 |
0,29 |
0,08 |
0,13 |
0,15 |
Samara Region |
0,30 |
0,4 |
0,30 |
0,15 |
0,17 |
0,17 |
Saratov region |
0,46 |
0,47 |
0,47 |
0,60 |
0,63 |
0,44 |
Republic of Tatarstan |
0,60 |
0,55 |
0,68 |
0,66 |
0,40 |
0,63 |
Udmurt republic |
0,37 |
0,36 |
0,41 |
0,33 |
0,32 |
0,32 |
Ulyanovsk region |
0,28 |
0,4 |
0,67 |
0,57 |
0,28 |
0,49 |
Chuvash Republic |
0,23 |
0,36 |
0,14 |
0,20 |
0,26 |
0,24 |
-----
Table 7-Index of sociocultural capital (ISCC) VFD regions for the 2010-2015 year.
VFD Region |
ISCC, on years |
|||||
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
|
Republic of Bashkortostan |
0,53 |
0,54 |
0,51 |
0,52 |
0,50 |
0,53 |
Kirov region |
0,53 |
0,56 |
0,51 |
0,56 |
0,42 |
0,57 |
Mari El Republic |
0,43 |
0,44 |
0,38 |
0,48 |
0,46 |
0,51 |
The Republic of Mordovia |
0,49 |
0,50 |
0,50 |
0,38 |
0,47 |
0,44 |
Nizhny Novgorod Region |
0,44 |
0,43 |
0,50 |
0,49 |
0,41 |
0,58 |
Orenburg region |
0,30 |
0,19 |
0,22 |
0,30 |
0,15 |
0,20 |
Penza region |
0,42 |
0,51 |
0,47 |
0,49 |
0,34 |
0,33 |
Perm Krai |
0,29 |
0,45 |
0,37 |
0,37 |
0,20 |
0,26 |
Samara Region |
0,49 |
0,48 |
0,46 |
0,52 |
0,26 |
0,53 |
Saratov region |
0,49 |
0,44 |
0,47 |
0,40 |
0,50 |
0,41 |
Republic of Tatarstan |
0,65 |
0,69 |
0,79 |
0,75 |
0,53 |
0,51 |
Udmurt republic |
0,34 |
0,39 |
0,41 |
0,34 |
0,28 |
0,39 |
Ulyanovsk region |
0,27 |
0,23 |
0,23 |
0,30 |
0,24 |
0,27 |
Chuvash Republic |
0,56 |
0,5 |
0.48 |
0,46 |
0,43 |
0,47 |
------
Table 8 - Index of innovation and intellectual capital (IIIC) VFD regions for the 2010-2015 year.
VFD Region |
IIIC, on years |
|||||
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
|
Republic of Bashkortostan |
0,50 |
0,52 |
0,51 |
0,50 |
0,51 |
0,54 |
Kirov region |
0,20 |
0,14 |
0,17 |
0,22 |
0,20 |
0,21 |
Mari El Republic |
0,14 |
0,12 |
0,15 |
0,13 |
0,16 |
0,23 |
The Republic of Mordovia |
0,23 |
0,32 |
0,46 |
0,44 |
0,49 |
0,54 |
Nizhny Novgorod Region |
0,58 |
0,56 |
0,54 |
0,51 |
0,52 |
0,55 |
Orenburg region |
0,29 |
0,19 |
0,18 |
0,13 |
0,14 |
0,13 |
Penza region |
0,33 |
0,30 |
0,32 |
0,31 |
0,30 |
0,29 |
Perm Krai |
0,39 |
0,36 |
0,39 |
0,37 |
0,23 |
0,19 |
Samara Region |
0,49 |
0,51 |
0,54 |
0,55 |
0,52 |
0,50 |
Saratov region |
0,41 |
0,40 |
0,32 |
0,30 |
0,42 |
0,47 |
Republic of Tatarstan |
0,60 |
0,66 |
0,54 |
0,49 |
0,53 |
0,52 |
Udmurt republic |
0,26 |
0,23 |
0,25 |
0,27 |
0,29 |
0,30 |
Ulyanovsk region |
0,44 |
0,42 |
0,43 |
0,44 |
0,41 |
0,40 |
Chuvash Republic |
0,24 |
0,26 |
0,24 |
0,27 |
0,32 |
0,33 |
------
Table 9- The overall index of human capital VFD regions for the 2010-2015 year.
VFD Region |
Overall index of human capital, years |
|||||
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
|
Republic of Bashkortostan |
0,44 |
0,45 |
0,43 |
0,40 |
0,41 |
0,43 |
Kirov region |
0,42 |
0,39 |
0,34 |
0,36 |
0,36 |
0,40 |
Mari El Republic |
0,31 |
0,32 |
0,30 |
0,30 |
0,31 |
0,36 |
The Republic of Mordovia |
0,48 |
0,51 |
0,53 |
0,51 |
0,54 |
0,56 |
Nizhny Novgorod Region |
0,52 |
0,55 |
0,57 |
0,52 |
0,51 |
0,56 |
Orenburg region |
0,33 |
0,24 |
0,25 |
0,25 |
0,21 |
0,22 |
Penza region |
0,36 |
0,38 |
0,38 |
0,40 |
0,36 |
0,35 |
Perm Krai |
0,28 |
0,32 |
0,33 |
0,26 |
0,18 |
0,18 |
Samara Region |
0,48 |
0,54 |
0,51 |
0,50 |
0,47 |
0,52 |
Saratov region |
0,45 |
0,41 |
0,37 |
0,37 |
0,42 |
0,39 |
Republic of Tatarstan |
0,62 |
0,63 |
0,68 |
0,64 |
0,56 |
0,62 |
Udmurt republic |
0,39 |
0,39 |
0,40 |
0,37 |
0,34 |
0,40 |
Ulyanovsk region |
0.37 |
0,42 |
0,41 |
0,43 |
0,32 |
0,39 |
Chuvash Republic |
0,38 |
0,38 |
0,33 |
0,33 |
0,36 |
0,37 |
Thus, the main parts of the region's human capital index were assessed which reflected on how many regions are effective in the field of human capital management. As we wrote earlier the most effective human capital management is carried out while we have information about its real state, as well as its potential (Cohen-Pirani, 2015, p.112).
For more detailed analysis, we consider the state of human capital in the Volga Federal District as a macro region with high human and resource potentials. To do this, we carry out the analysis to other regions of the Volga Federal District of the indicators in systems that form human capital (Mustafin, 2015, p. 105). The need to develop and enhance the level of human capital is necessary to the fact that it produces quality and high standard of living. With a high concentration of innovation and intellectual manpower VFD economy can reach a new level of development and, consequently, change "skewed" GRP structure that is incorporated in the implementation of the strategic target of regional development programs and strategies for socio-economic complex (Mishagina, 2015, p. 1012).
We considered indicators that reflect the level of development of human capital of the Volga Federal District regions. Next, we shall represent them graphically for a more visual representation of the results.
Fig. 1. The overall human capital index (ICHKR) VFD region
Based on the resulting data and the overall human capital index (ICHKR) regions of the Volga Federal District the Republic of Tatarstan is the leader. It can be concluded that the use of innovative programs in the field of human capital and methods of work for the implementation of the updated innovation policy requests a systematic resolution of issues (Mustafin and Ignateva, 2016, p. 31). The professional experience and expertise of great importance in increasing the efficient use of human capital accumulate for a long time. It is necessary to invest heavily in the development of knowledges. Then region will be able to apply their knowledge in practice (Davin et al., 2015, p. 48).
The process of formation of human capital requires at least five years. Wherein there is no guarantee that the implementation of the human capital of an innovative program will bring a positive effect, the result can be negative, which can serve as an example of the Perm region and the Orenburg region. As you can see from the results of human capital indicators deteriorate since 2013, approximately in equal proportions. Note that there is deterioration of innovation and intellectual capital in the same years (Osadchy and Akhmetshin, 2015).
In order to follow the trend of further development of human capital we can construct the trend on the basis of the results of the 2010 -2015 year.
Fig. 2. Predictive values of human capital development
in the Volga Federal District in the years 2016-2020
There should be gradual and extensive study of all the stages that make up the process of human capital creating. It is necessary to take into account the specificity of each region, and then the process for improving the use and development of human capital will be more effective, and will benefit not only particular regions of Russia, but the entire state as a whole (Wietzke, 2015, p.298).
Thus, for the majority of regions of Russia need to developing and modernization the existing programs for human capital development are needed in order to improve the economic potential in the fields of innovation with taking into account the specificities of each region. For Tatarstan are needed: emphasis on innovative training programs for regional clusters, the territory of priority development and special economic zones the creation and development of which are incorporated in the strategic development of Tatarstan till 2030, with the use of the main factor - human capital. In Tatarstan this problem is a big omission and an obstacle in improving of the region's economic development (Tatarstan 2030, 2015), (Matveev et. al., 2016).
Tatarstan continues to hold a leading position in Russia, but its human capital has a great potential what should be developed and to used, since the country's economy as a whole is one of the most promising in terms of the factors that contribute to the future success and efficient development of the region (Silos and Smith, 2015, p. 640).
The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.
1. Baron, A., & Armstrong, M. (2007). Human capital management: achieving added value through people. London: Kogan Page Ltd.
2. Cecina, O. S. (2013). Integrative approach to managing human capital and innovative development of the industry of the economic system. Innovations and investments, 6, 240-246.
3. Coen-Pirani, D. (2015). Human capital accumulation in a federation. European Economic Review, 76, 104-124. doi: 10.1016/j.euroecorev.2015.02.002.
4. Davin, M., Gente, K., Nourry C. (2015). Should a country invest more in human or physical capital?. Mathematical Social Sciences, 76, 44-52. doi: 10.1016/j.mathsocsci.2015.04.003.
5. Gagarin, G. Y. (2012). Human capital and its role in ensuring the competitiveness of the Russian regions. Regional Economy: Theory and Practice, 23, 9-14.
6. Gapsalamov, A. R. (2013). Regional industry in the period of nationalization: Based on the materials of tatarstan republic (Russia). Middle East Journal of Scientific Research, 15(11), 1487-1495. doi:10.5829/idosi.mejsr.2013.15.11.11619
7. Gerasimov, V. O., Dmitrieva, I. S., Sharafutdinov, R. I. (2016) Estimation of innovative human resource capacity in the region by the example of the Republic of Tatarstan. Science of Krasnoyarsk, 37, 199-206.
8. Gorodnikova, N. V., Hochberg, L. M., & Ditkovskiy, K. A. (2015). Indicators of innovative activity: statistical yearbook. Moscow: Higher School of Economics.
9. Korableva O., Kalimullina O. (2014). ‘The Formation of a single legal space as a prerequisite for overcoming systemic risk’. Asian Social Science, Vol. 10 (21), 256-260.
10. Korableva O., Kalimullina O. (2016). ‘Strategic Approach to the Optimization of Organization Based on the BSC SWOT Matrix’. Proceedings of the International Conference on Knowledge Engineering and Applications. ICKEA, 2016. Singapore, September 28-30, 2016. p. 212-215
11. Kubenka, M. (2014). ‘The Factors Affecting the Accuracy of Business Failure Prediction Models’. In: European Financial Systems 2014. Proceedings of the 11th International Scientific Conference, Brno: Masaryk University, 2014, pp. 364-371. ISBN 978-80-210-7153-7.
12. Kubenka, M., Kralova, V. (2013). ‘Z" Score in Assessing the Financial Health in the Construction Sector’. E + M Ekonomics and Management. 2013. 16(1) pp. 101– 112. ISSN 1212-3609
13. Latyshev, I. O., & Akhmetshin, E. M. (2015). Methodological approaches to analyzing the indicators of human capital management in the interests of innovation development of enterprise. International Business Management, 9(6), 1565-1570. doi:10.3923/ibm.2015.1565.1570.
14. Markova, O. V., Smirnova, M. Yu. (2013). An innovative approach to the management of human capital in crisis management. Bulletin of the Volga State University of Service. Series: Economy, 1(27), 161-166.
15. Matveev, Y. V., Trubetskaya, O. V., Lunin, I. A., Rousek P., & Kopnov, V. A. (2016). Clusters and their role in economic development. International Journal of Economic Perspectives, 10(3), 113-125.
16. McGuirk, H., Lenihan, H., Hart, M. (2015). Measuring the impact of innovative human capital on small firms’ propensity to innovate. Research Policy, 44(4), 965-976. doi: 10.1016/j.respol.2014.11.008.
17. Mishagina, M. V. (2015). Human capital as a factor of innovation development of the Volga Federal District. Creative Economy, 9(8), 1009-1024. doi: 10.18334/ce.9.8.580.
18. Mustafin, A. N. (2015). Human capital management through non-financial incentives in the innovation economy. Kazan Economic Bulletin, 1(15), 104-107.
19. Mustafin, A. N., & Ignateva, O. A. (2016). Formation of the human capital assessment quality model at the present stage of development of innovative economy. Academy of Strategic Management Journal, 15(SpecialIssue1), 27-37.
20. Nevretdinova, M. V. (2015). Innovative approaches to the management of human capital. Economy and Entrepreneurship, 5-1, 550-554.
21. Osadchy, E. A., & Akhmetshin, E. M. (2015). The intellectual capital importance and the role of organizations against the backdrop of a crisis: Innovation vector. Social Sciences (Pakistan), 10(6), 1013-1020.
22. Schultz, T. (1961). Investment in Human Capital. The American Economic Review, 1, 38-56.
23. Shafran, A. M. (2011). Human capital as a factor of investment attractiveness of Russian regions. Bulletin of the Chuvash State Pedagogical University named after I. Ia. Iakovlev, 3, 224-231.
24. Silos, P., & Smith, E. (2015). Human capital portfolios. Review of Economic Dynamics, 18(3), 635-652. doi: 10.1016/j.red.2014.09.001.
25. Tatarstan 2030 (2015, June 15). Strategy for Socio-Economic Development of the Republic of Tatarstan till 2030. Retrieved November 30, 2016, from http://http://tatarstan2030.ru/
26. Ustyuzhna, O. N., & Khusainova, S. V. (2013). Approaches and methodologies employed in constructing ratings for the social-economic performance of the constituents of the russian federation. Middle East Journal of Scientific Research, 18(1), 101-105. doi:10.5829/idosi.mejsr.2013.18.1.12392
27. Varvarigos, D., & Arsenis, P. (2015). Corruption, fertility, and human capital. Journal of Economic Behavior & Organization, 109, 145-162. doi: 10.1016/j.jebo.2014.11.006.
28. Wietzke, F. (2015). Long-Term Consequences of Colonial Institutions and Human Capital Investments: Sub-National Evidence from Madagascar. World Development, 66, 293-307. doi: 10.1016/j.worlddev.2014.08.010
29. Zabelina, O. V., Kozlova, T. M., Romaniuk, A. V. (2013). Human capital region: the nature of the problem, the structure and evaluation. Economics, Statistics and Informatics, 4, 59-64.
30. Zubakov, V. M., & Mustafin, A. N. (2015). The controlling process of the human capital through the effective redistribution of the general welfare. Mediterranean Journal of Social Sciences, 6(1S3), 270-273. doi:10.5901/mjss.2015.v6n1s3p270
31. Zubarevich, N. V. (2014). Regional development and regional policy in Russia. ECO, 4, 6-27.
1. Kazan Federal University, Naberezhnochelninsky Institute of KFU, Russian Federation, Tatarstan, 423812, Naberezhnye Chelny, Mira St., (1/18). E-mail: iradmit@yandex.ru
2. Kazan Federal University, Naberezhnochelninsky Institute of KFU, Russian Federation, Tatarstan, 423812, Naberezhnye Chelny, Mira St., (1/18). E-mail: pineapplehead@inbox.ru
3. Kazan Federal University, Naberezhnochelninsky Institute of KFU, Russian Federation, Tatarstan, 423812, Naberezhnye Chelny, Mira St., (1/18). E-mail: tigrurus@mail.ru
4. Kazan Federal University, Elabuga Institute of KFU, Russian Federation, Tatarstan, 423604, Elabuga, Kazanskaya Street, 89, E-mail: elvir@mail.ru
5. Saint Petersburg State University of Aerospace Instrumentation, SUAI, Russian Federation, 190000, Saint-Petersburg, Bolshaya Morskaya str., 67 E-mail: pavlovspb555@mail.ru